November 2017

Project Need

- SaskPower continues to invest in the province's electricity system to ensure we have the infrastructure in place to meet the growing need for reliable, sustainable and cost-effective power in Saskatchewan.
- As part of this investment, SaskPower is increasing the amount of its renewable capacity to meet new and emerging emissions regulations through importing 100 megawatts (MW) of renewable baseload hydropower from Manitoba Hydro.
- While SaskPower and Manitoba Hydro worked together to establish common border tie point locations and have been in constant communication on the timing of the project, we have agreed to conduct separate route location and assessment studies for our respective portions of the interprovincial transmission line.

Project Description

- The 230 kilovolt (kV) transmission line to run from Manitoba Hydro's Birtle Station (5 kilometres south of Birtle, MB) to SaskPower's Tantallon Switching Station (6 kilometres north of Tantallon, SK).
- 2 potential transmission line "tie points" along the provincial border were selected by Manitoba Hydro and SaskPower to put forward for consultation.
- 7 route alternatives ranging between $25-35 \mathrm{~km}$ in length from Tantallon Switching Station to the Saskatchewan-Manitoba border were been identified for SaskPower's first round of public consultation, with multiple route alternatives ending at each of the 2 tie point locations.
- The transmission line tie point ultimately selected by Manitoba Hydro and SaskPower after the first round of public consultation is the SOUTH tie point zone, located within the Spy-Hill Ellice Community Pasture.
- The preferred route selected is 30.2 km in length. Based on feedback, approximately 5.5 km of that route will utilize the open circuit position on SaskPower's existing TA13 transmission line, meaning only 24.7 km of new construction will be required.

Preliminary Border Crossing (Tie-Point) Zones

Through discussions with Manitoba Hydro, the following four tie point locations were originally identified. The 2 most southern locations were removed from consideration due to constraints on one or both sides of the border.

PROJECT OVERVIEW

Preliminary Route Options

Powering the future

Preliminary Route Options

Powering the future

Project Schedule

- Border tie point zones selection
- Alternative routes selection
- First round of public consultation
- Preferred route/border crossing selection
- Second round of public consultation
- Environmental field studies
- Transmission line design
- Easement acquisition
- Construction
- Energization

May 2016 - July 2016
July 2016 - October 2016
October 2016
November 2016 - January 2017
January 2017 - March 2017
March 2017 - October 2017
March 2017 - May 2018
May 2018 - July 2018
2018-2020
2020-2021
(depending on regulatory approvals)

Project Considerations

SaskPower's goal is to minimize its impact on the biophysical and human environment.
This is achieved by:

- Compliance with all regulatory requirements (Municipal, Provincial and Federal);
- Consultation with elected officials, Aboriginal groups, landowners, and other potentially affected groups and individuals as applicable;
- Avoiding or mitigating impacts to rare and endangered species and their habitats and sensitive landscape features (i.e., sand hills, wetlands, native prairie, heritage resources);
- Use of existing rights-of-way and previously disturbed areas; and
- Accommodating local land uses and infrastructure.
- Potential environmental issues related to transmission line construction (i.e. off right of way access, access mats, etc.)

Tantallon Switching Station

4. SaskPower

138 kV TA13 Transmission Line

14 SaskPower

Powering the future

Cutarm Creek Valley

4. SaskPower

Powering the future

Wetlands

4. SaskPower

Powering the future

‘NORTH’ Border Tie Point

Looking east along NORTH 1 Route

14 SaskPower
Powering the future

‘SOUTH’ Border Tie Point

Looking east along Centre 1 Routes

Highway 600 / CN Rail Line

14 SaskPower

Powering the future

General Engineering Specifications

230 kV Single-Circuit Galvanized Steel H-Frame Tangent Structure
(T70/001)

Pole Spacing: 6.6m (22ft)
Structure Height: 19-27m (62-89ft)
Average Span: ~300m (985ft)
Deflection Structures: Guy-anchored

Powering the future

230 kV Single-Circuit Galvanized Steel H-Frame Tangent Structure (T70/001)

Powering the future

Anchored Structures

Medium Angle Deflection Structure

Heavy Angle Deflection Structure

Size Comparison of Distribution \& Transmission Lines

230 kV Minimum Clearance of Conductor

Over Farmland 8.10 metres (26.6 feet)

Over Highway 8.40 metres (27.6 feet)

Over Railways
9.30 metres (30.5 feet)

Over High load Corridors 11.25 meters (36.9 feet)

Typical 230 kV Right-of-Way Width

H-Frame Standard Width 40 metres (131.2 feet)

Technical Project Proposal Approach

- Meet MOE’s June 2014 Technical Proposal Guidelines
- Identify baseline conditions, potential effects of the project, and mitigation measures
- Resources most directly affected:

- Terrain and Soils
- Vegetation
- Wildlife
- Human Environment (e.g., land use conflicts, residences)

4. SaskPower

Key Mitigation Strategies

- Routing
- Structure placement
- Construction timing, scheduling and planning
- Will be constructing in dry/frozen conditions in pasture
- Environmental construction monitoring
- Reclamation

Powering the future

Staking of Structures and Environmental Concerns

Staking structure locations, anchors and right-of-way off sets

Environmental areas (i.e., noxious weeds, wetlands, nests, etc.) identified for avoidance

Right-of-Way Preparation

Drum-style mulcher used for tree clearing

Hydro-axe equipment used for tree clearing

Powering the future

Right-of-Way Preparation (cont.)

Drum mulcher clearing right-of-way

Cleared right-of-way ready for construction

Right-of-Way Preparation (cont.)

Hand clearing right-of-way in sensitive habitat

Chipping hand cleared vegetation

Installing Gates and Mending Fences

SaskPower Standard Gate

Powering the future

Hauling out Material

Loader and pole trailer

Picker truck

Trucks and trailer

Powering the future

Framing Structures

Loader used for framing structures

Crews bolting together structures

Structure Setting

4. SaskPower

Powering the future

Conductor Stringing

Temporary rider poles

Conductor on reels

Stringing equipment

Conductor on dollies during stringing

4 SaskPower

Powering the future

Other Construction Activities

Installing ground rods

Crushed rock backfill

Installing sacrificial anodes

Tension (proof) testing anchors

4 SaskPower

Powering the future

TOTAL LENGTH AND LAND USE

Route Alternative	Total Length (km)	Percentage Cultivated Land (\%)	Percentage on legal boundaries (\%)
PREFERRED ROUTE	$\mathbf{3 0 . 2 ~ k m ~}$	$\mathbf{3 0 \%}$ (not including TA13)	$\mathbf{6 4 \%}$
North 1	28.0	78% (highest)	69%
North 2	28.0	77%	0%
North 3	26.7	78%	0%
Centre 1 (North Tie Option)	26.5	60% (lowest)	17%
Centre 1 (South Tie Option)	31.5	69%	19%
Centre 2 (North Tie Option)	27.2	58%	45%
Centre 2 (South Tie Option)	30.7	68%	12%
South 1 (North Tie Option)	29.4	65%	60%
South 1 (South Tie Option)	32.3	73%	46%
South 2 (North Tie Option)	28.0	65%	0%
South 2 (South Tie Option)	30.3	72%	0%

ENVIRONMENTAL FACTORS

Route Alternative	Number of Waterbody Crossings	Required Tree Clearing (hectares)	Length in Community Pasture (km)
PREFERRED ROUTE	$\mathbf{2 1}$	$\mathbf{1 0 . 9}$ ha (lowest)	$\mathbf{9 . 1} \mathbf{~ k m ~}$
North 1	27	13.88	0
North 2	25	14.79	0
North 3	28 (highest)	11.96	0
Centre 1 (North Tie Option)	21	19.20	2.5
Centre 2 (North Tie Option)	19 (lowest)	20.98	9.0
Centre 2 (South Tie Option)	22	15.7	6.2
South 1 (North Tie Option)	19	26	12.5
South 1 (South Tie Option)	25	26.1 (highest)	9.1
South 2 (North Tie Option)	28 (highest)	15.4	3.4
South 2 (South Tie Option)	27		4.8

RESIDENCES

Route Alternative	Residences within $\mathbf{6 0} \mathbf{m}$	Residences within $\mathbf{6 0 \mathbf { m } - \mathbf { 1 6 0 } \mathbf { ~ m }}$	Residences within $\mathbf{1 6 0} \mathbf{~ m - 1 / 2 ~ m i l e ~}$
PREFERRED ROUTE	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$ (lowest)
North 1	0	0	8
North 2	0	0	6
North 3	0	1	5
Centre 1 (North Tie Option)	0	1	7
Centre 1 (South Tie Option)	0	0	7
Centre 2 (North Tie Option)	0	1	6
Centre 2 (South Tie Option)	0	0	6
South 1 (North Tie Option)	0	0	8
South 1 (South Tie Option)	0	0	10 (highest)
South 2 (North Tie Option)	0	0	4 (lowest)
South 2 (South Tie Option)	0	7	

ESTIMATED COST*

Route Alternative	Estimated Cost (Capital Costs Only)	Estimated Cost (with Rail Mitigation)
PREFERRED ROUTE	$+7 \%$	$+\mathbf{2 8 \%}$
North 1	$+13 \%$	$+13 \%$
North 2	$+14 \%$	$+14 \%$
North 3	$+11 \%$	$+11 \%$
Centre 1 (North Tie Option)	$+8 \%$	$+8 \%$
Centre 1 (South Tie Option)	$+31 \%$	$+58 \%$
Centre 2 (North Tie Option)	$+28 \%$	$+11 \%$
Centre 2 (South Tie Option)	$+22 \%$	$+54 \%$
South 1 (North Tie Option)	$+33 \%$	$+22 \%$
South 1 (South Tie Option)	+11\%	$+60 \%$
South 2 (North Tie Option)	$+9 \%$	LOWEST COST
South 2 (South Tie Option)		$+36 \%$

*percentage premium over lowest cost option

QUESTIONS \& DISC USSION

